

Wärmeatlas Hessen

Wärmewende Forum Hessen

15. Juni 2023

Dipl.-Ing. (FH) Susanne Ochse GEF Ingenieur AG

Auftraggeber und Konsortium

Auftraggeber: LandesEnergieAgentur Hessen

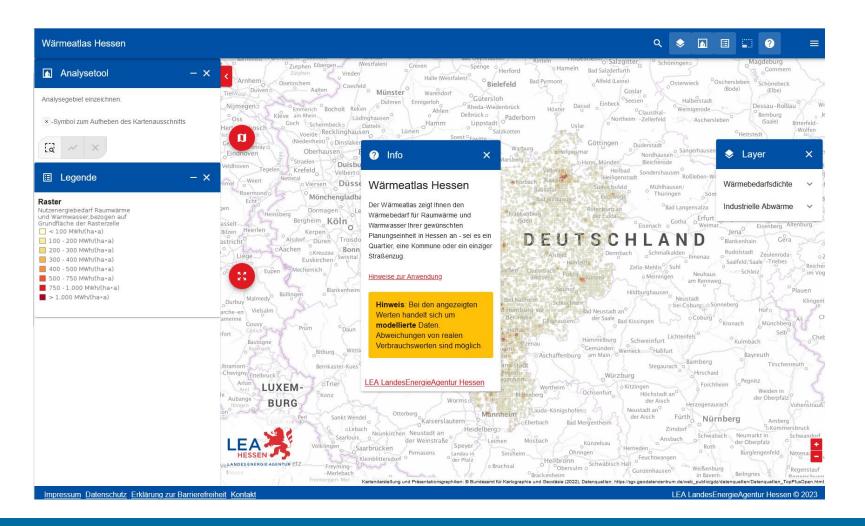
- Maßgeschneiderte Geo-Lösungen seit 1999
- + Geo-IT, Geodaten, Geo-Dienstleistungen (u.a. WebGIS)
- + 22 Mitarbeiter:innen
- Branchen: Naturgefahren,
 Versicherungen, Telekommunikation,
 Ingenieurswesen,
 Energiewirtschaft, Luft- und Raumfahrt,
 Einzelhandel, Werbewirtschaft

- + Gemeinnütziges, unabhängiges Institut für umweltwissenschaftliche Forschung und Beratung
- + Seit über 40 Jahren am Markt
- + 50 Mitarbeiter:innen
- + Themenschwerpunkte sind u.a. der kommunale Klimaschutz und das Handlungsfeld "Gebäude"

- B2B-Dienstleister im Bereich der leitungsgebundenen Wärmeversorgung seit 35 Jahren
- Beratung, Konzeption von Energieversorgungssystemen u.a. mit Fokus auf Wärmenetzen
- 55 Mitarbeiter:innen
- Kompetenzen: Wärmekataster, kommunale Wärmeplanungen, Transformationspläne, etc.

Gliederung

- 1) Der Wärmeatlas Hessen
- 2) Evaluierung
- 3) Grundlagen des Modells
- 4) Anwendung



Wärmeatlas Hessen - WebGIS

- + www.waermeatlas-hessen.de
- + Wärmebedarfsdichten
- + Industrielle Abwärme
- + Dokumentation
- Verschiedene Hintergrundkarten auswählbar

+ Adresssuche

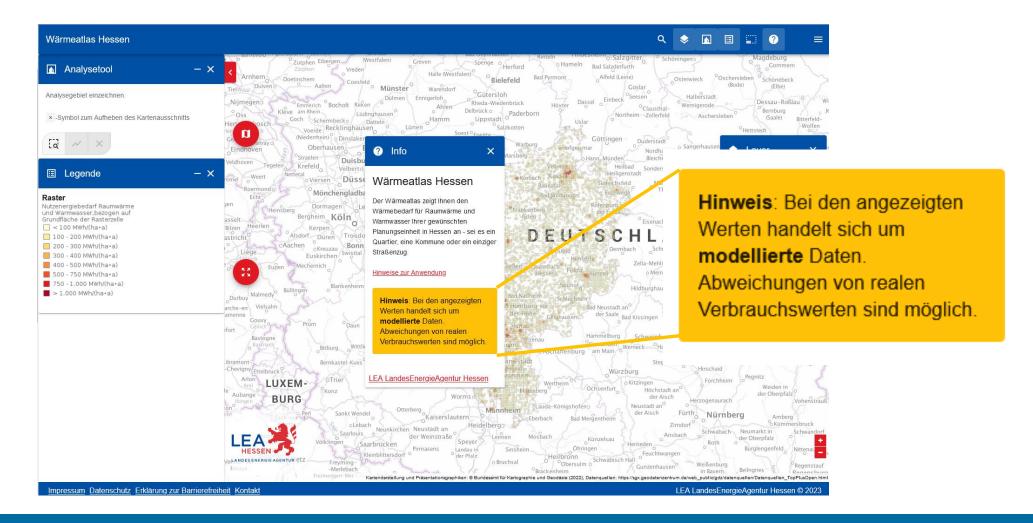
+ Ebenen

+ Analysetool

+ Legende

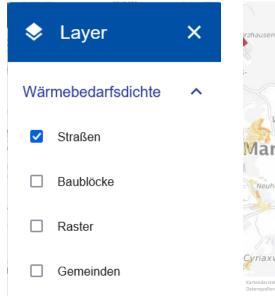
+ Messwerkzeug

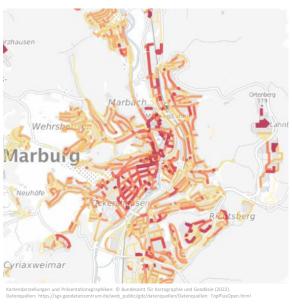
+ Infotext

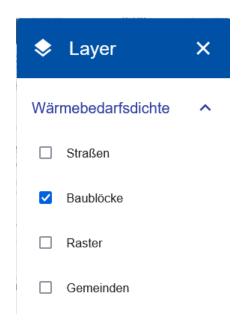

2

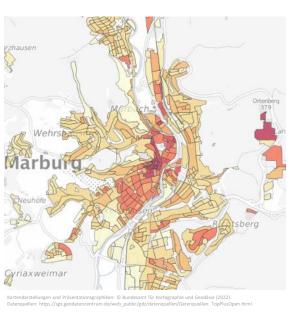
Wärmeatlas Hessen – Modellierte Daten

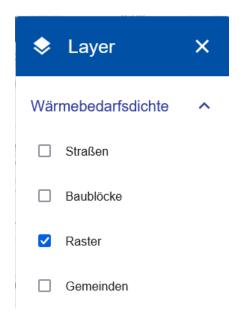
Wärmeatlas Hessen - Modelle

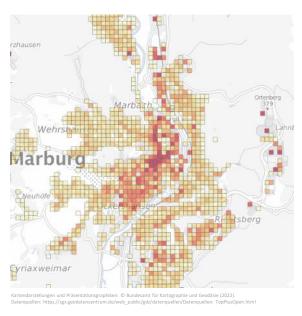


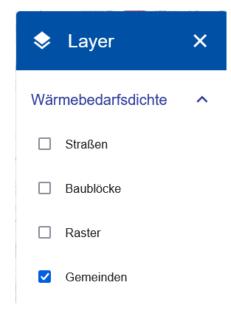




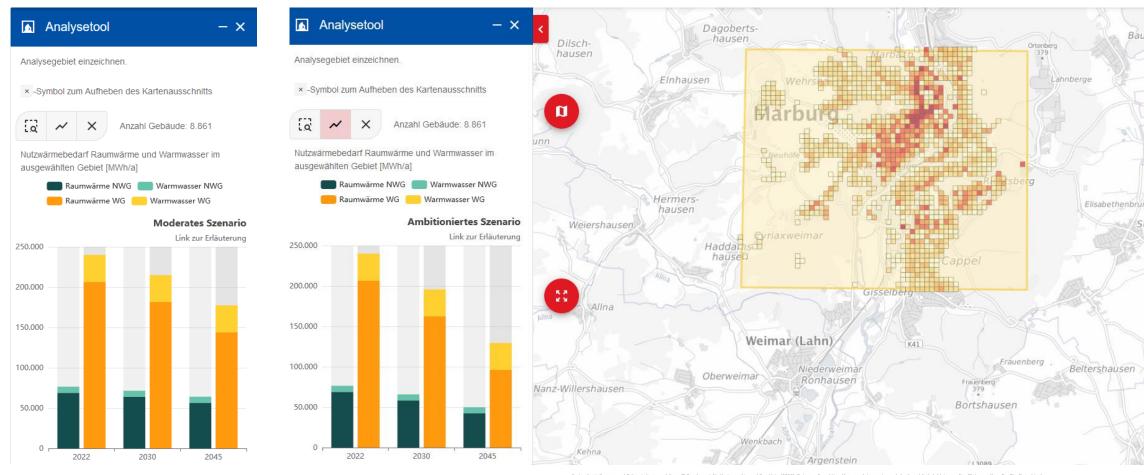

Aggregierung auf Straßenabschnitte (Liniendichten)



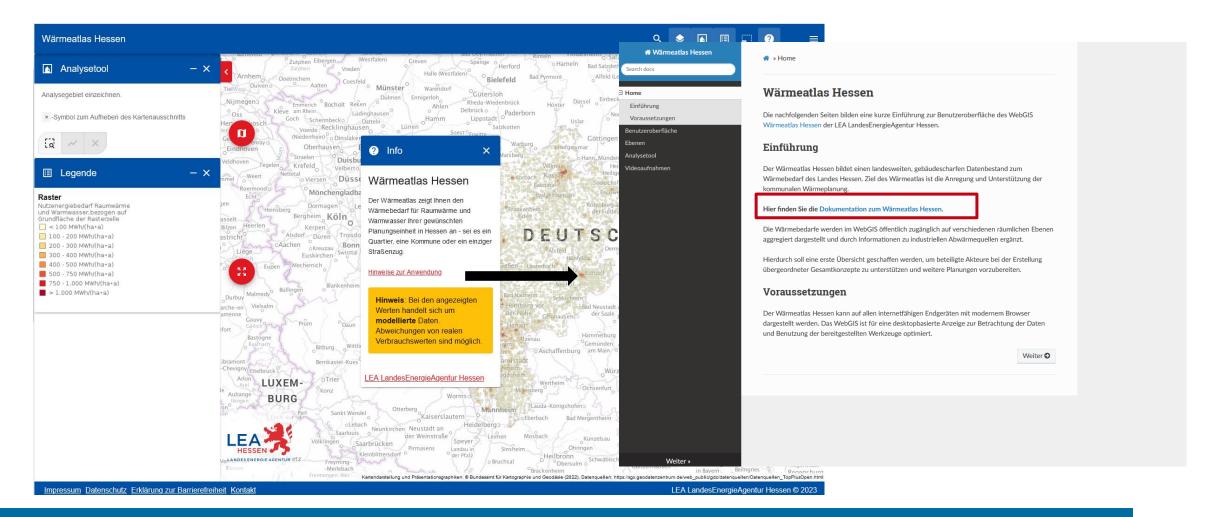

Aggregierung auf Baublöcke



Aggregierung auf Rasterzellen (1 km² und 1 ha)


Aggregierung auf Kommunen

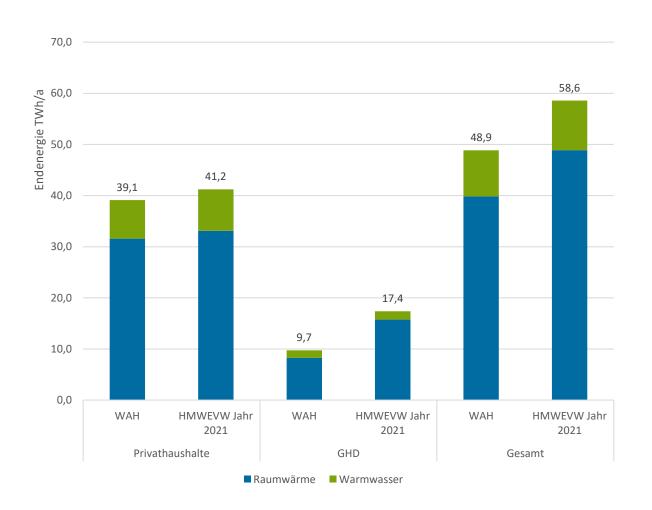
Wärmeatlas Hessen - Analysetool


(artendarstellungen und Präsentationsgraphiken: 🕲 Bundesamt für Kartographie und Geodäsie (2022). Datenquellen: https.//sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen: TopPlusOpen.htm

Wärmeatlas Hessen - Doku

Gliederung

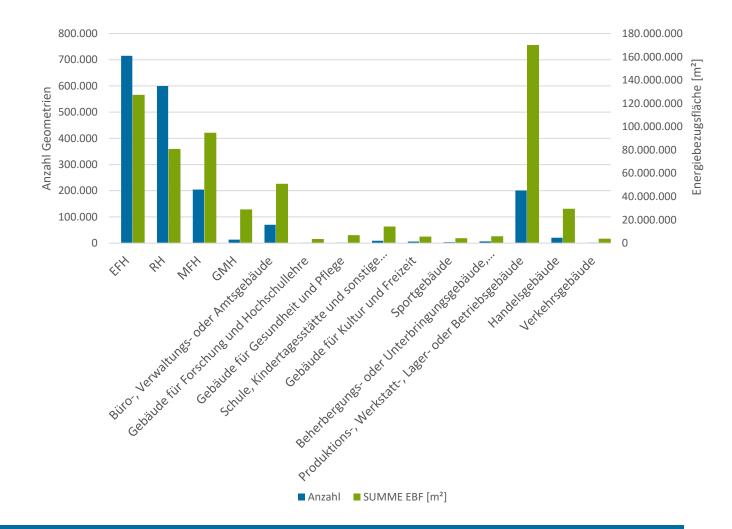
- 1) Der Wärmeatlas Hessen
- 2) Evaluierung
- 3) Grundlagen des Modells
- 4) Anwendung


Wärmeatlas Hessen:

Abgleich mit Landesstatistik Energieverbrauch

- + Wohngebäude: sehr hohe Übereinstimmung
- + Nichtwohngebäude: 45% niedrigerer Wärmebedarf im WAH v.a. durch fehlende Daten zur Gebäudenutzung
 - + Einstufung vieler Geometrien als GEG-relevant: "unklar"

Wärmeatlas Hessen: Statistik Gebäudemodell

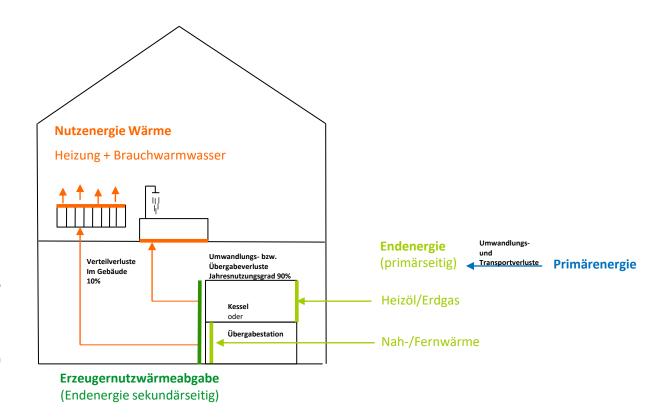


- + Sehr hohe Übereinstimmung mit Wohnflächenstatistik auf Landesebene (-4%)
- + Die meisten Nichtwohnnutzungen werden ebenfalls plausibel abgebildet

+ Geometrien werden mit dem Attribut GEG-relevant eingestuft:

```
"nicht relevant"
"unklar"
"relevant"
```


Evaluierung anhand von Verbrauchsdaten



Input-Daten = zählerscharfe Gasverbräuche

- Fokus auf Wohnbebauung
- Witterungsbereinigung
- Umrechnung Brennwert in Heizwert mit Faktor 0,9
- Umrechnung Endenergie in Erzeugernutzwärmeabgabe mit Faktor 0,9
- Umrechnung Erzeugernutzwärmeabgabe in Nutzenergie mit Faktor 0,9
- Berechnung von spez. Wärmebedarfen bzgl. der Energiefläche des WAH
- Plausibilisierung der Gasverbrauchswerte durch Aussortieren von Ausreißern (Verbräuche < 60 kWh/m² und > 300 kWh/m²)
- Vergleich umgerechnete Verbrauchsdaten und Bedarfsdaten Wärmeatlas Hessen

Darstellung nach Hausladen. Leitfaden Energienutzungsplan

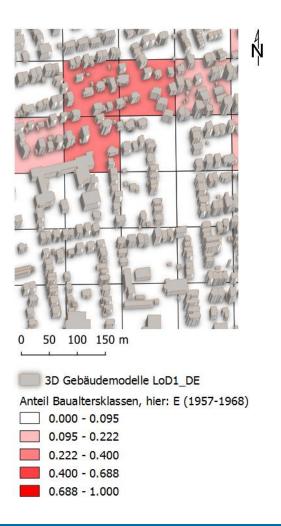
Vergleich für vier Gemeinden

Private Haushalte	Anzahl	Median	Median	Vergleich
Datensätze relevant PHH mit spezifischem Verbrauch zwischen 60 und 300 kWh _{NE} /m²WAH	Datensätze	Gasverbrauch	Wärmeatlas Hessen	Gas = 100%
		kWh _{NE} /m²	kWh _{NE} /m²	Anteil
Gemeinde 1	< 10.000	141	86	61%
Gemeinde 2	< 5.000	123	100	81%
Gemeinde 3	< 1.000	103	102	99%
Gemeinde 4	< 1.000	104	101	97%

- + Für die stark schwankenden Abweichungen zwischen den Gasverbräuchen und den modellierten Daten des Wärmeatlas Hessen konnte keine systematische Erklärung gefunden werden. Ohne Hinweise auf eine systematische Ursache ist eine Anpassung des Modells nicht sinnvoll
- + Eine Auswertung über nur vier Gemeinden ist nicht repräsentativ, trotzdem ermöglicht der Vergleich den Nutzern eine Einschätzung, mit welchen Unsicherheit die Bedarfsdaten behaftet sind.
- + Diese Einschätzung sollte bei der Anwendung beachtet werden.

Gliederung

- 1) Der Wärmeatlas Hessen
- 2) Evaluierung
- 3) Grundlagen des Modells
- 4) Anwendung



Wärmeatlas Hessen: Datengrundlage

- + 3D-Gebäudemodell im Level-of-Detail 1 (LoD_1)
 - + Geometrien werden von den Vermessungsämtern Objektnutzungsschlüssel zugeordnet
 - + 3D-Geometrien als Grundlage für Abschätzung einer Energiebezugsfläche
- + Daten zur Gebäude- und Flächennutzung OpenStreetMap & BEAM¹
- + Baualtersklassen Wohngebäude aus der Gebäude- und Wohnungszählung 2011 auf Hektarraster
- + Klimazonen DIN-V-18599

¹ BEAM: Basic European Assets Map (https://emergency.copernicus.eu/mapping/list-of-components/EMSN076/ALL)

Wärmeatlas Hessen: Erfassung der Gebäudefunktion

Ausgangsdaten LoD1

ALKIS			
Gebäude-		Anzahl	Anteil an
funktion	ALKIS Beschreibung	Geometrien	Geometrien
31001_1000	Wohngebäude	3.958.621	80,84%
31001_2000	Gebäude für Wirtschaft oder Gewerbe	672.368	13,73%
31001_3000	Gebäude für öffentliche Zwecke	129.412	2,64%
31001_2460	Gebäude zum Parken	51.975	1,06%
31001_9998	Nach Quellenlage nicht zu spezifizieren	43.952	0,90%
31001_2523	Umformer	21.051	0,43%
31001_2513	Wasserbehälter	5.034	0,10%
31001_3041	Kirche	3.528	0,07%
31001_2740	Treibhaus, Gewächshaus	2.939	0,06%
31001_3281	Schutzhütte	1.999	0,04%
31001_2512	Pumpstation	1.489	0,03%
31001_3051	Krankenhaus	1.018	0,02%

Aufbereitungsschritte:

- Anreicherung Gebäudefunktion aus Sekundärdaten (OSM/BEAM)¹
- Zusammenführung von Grundflächen

68 Gebäudefunktionen mit starker Aggregation

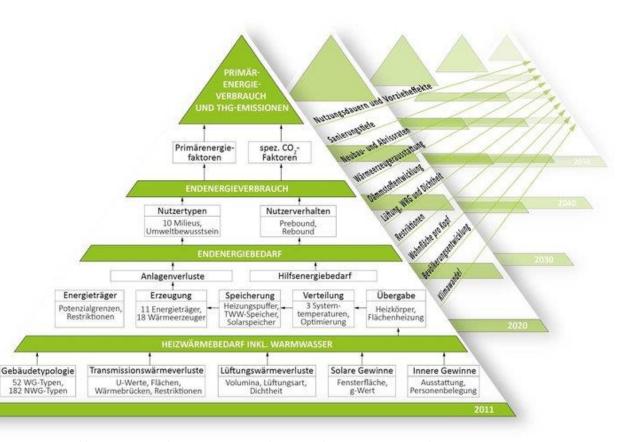
Aufbereitet für Gebäudemodell

ALKIS Gebäude-		Anzahl	Anteil an
	ALMO D. J. T.		
funktion	ALKIS Beschreibung	Geometrien	Geometrien
31001_1000	Wohngebäude	1751080	40,27%
31001_2723	Schuppen	816931	. 18,79%
31001_2463	Garage	798921	. 18,37%
51009_1610	Überdachung	283801	6,53%
31001_2000	Gebäude für Wirtschaft oder Gewerbe	187597	4,31%
31001_1500	Nebengebäude	167266	3,85%
31001_2460	Gebäude zum Parken	44443	1,02%
31001_2700	Gebäude für Land- und Forstwirtschaft	40698	0,94%
31001_3000	Gebäude für öffentliche Zwecke	37094	0,85%
31001_1120	Wohngebäude mit Handel und Dienstleistungen	32641	. 0,75%
31001_2020	Bürogebäude	23684	0,54%
31001_2523	Umformer	21034	0,48%
31001_1313	Gartenhaus	19740	0,45%
31001_2054	Laden	11706	0,27%
31001_2010	Gebäude für Handel und Dienstleistungen	8714	0,20%
31001_2100	Gebäude für Gewerbe und Industrie	7492	0,17%
31001_3021	Allgemein bildende Schule	6297	0,14%
31001_2140	Gebäude für Vorratshaltung	6223	0,14%
31001_1310	Gebäude zur Freizeitgestaltung	5303	0,12%
31001_2513	Wasserbehälter	4362	0,10%

166 Gebäudefunktionen mit höherer Differenzierung

¹ BEAM: Basic European Assets Map (https://emergency.copernicus.eu/mapping/list-of-components/EMSN076/ALL)

Wärmebedarfsbilanzierung für Gebäudebestände



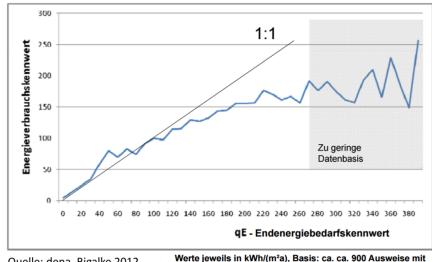
+ Energetische Gebäudetypologie(n) als Hilfsmittel

+ Typische Werte:

- + Geometrie (Bauteilflächen / Volumina)
- + Energetische Qualität Bauteile (U-Werte)
- + Innentemperaturen & Lüftungsverluste (u.a. nutzerabhängig)
- + Standortabhängige Klimadaten (Außentemperaturen, solare Strahlung)
- + Brauchwarmwasserbedarf [kWh/m²a]
- + Innere Gewinne [kWh/m²a]
- + ...

ifeu-Gebäudesimulationsmodell GEMOD

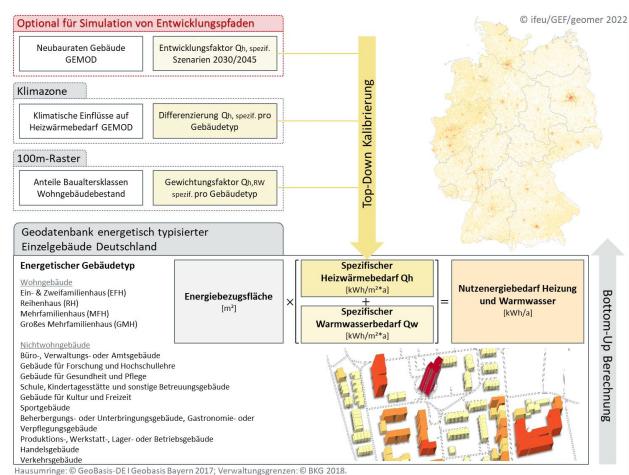
https://www.ifeu.de/methoden-tools/modelle/gebaeudemodell/


Wärmebedarf vs. Wärmeverbrauch

- + **Der Verbrauch** ist eine empirische Messgröße und spiegelt individuelles Nutzerverhalten und ggf. Witterungseffekte wider. Verbrauchsdaten liegen nicht flächendeckend vor und müssen für Vergleiche, Analysen und Hochrechnungen aufbereitet werden.
- + Der Bedarf ist das Ergebnis einer Berechnung anhand bekannter bauphysikalischer Daten mit standardisierten Annahmen zum Nutzerverhalten und zur Witterung. Bedarfsberechnungen eignen sich als Vergleichsgröße für Gebäudeeffizienz und als Grundlage für Prognosemodelle.
- + Der Wärmeatlas Hessen enthält eine Abschätzung des verbrauchskalibrierten Nutzenergiebedarfs für Raumwärme und Warmwasser für einzelne Wohnund Nichtwohngebäude

Quelle: dena, Bigalke 2012

gleichzeitigem Bedarfs- und Verbrauchskennwert

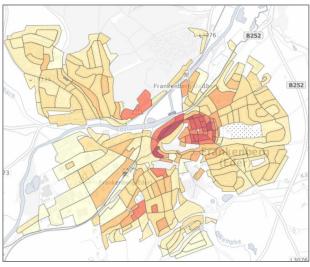

Wärmeatlas Hessen: Wärmebedarfsmodell

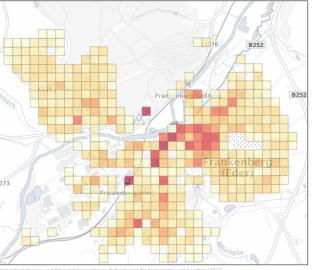
- + Wärmebedarfsberechnung erfolgt auf Basis des ifeu-Gebäudesimulationsmodells GFMOD
- + bauteilbasierte Berechnung des Heizwärmebedarfs gemäß Monatsbilanzverfahren für Typgebäude
- + Übertragung von Energiekennzahlen in die räumliche Datengrundlage differenziert nach:
 - + Energetischem Gebäudetyp
 - + Baualtersklasse
 - + Klimazone

Gliederung

- 1) Der Wärmeatlas Hessen
- 2) Evaluierung
- 3) Grundlagen des Modells
- 4) Anwendung

Anwendung

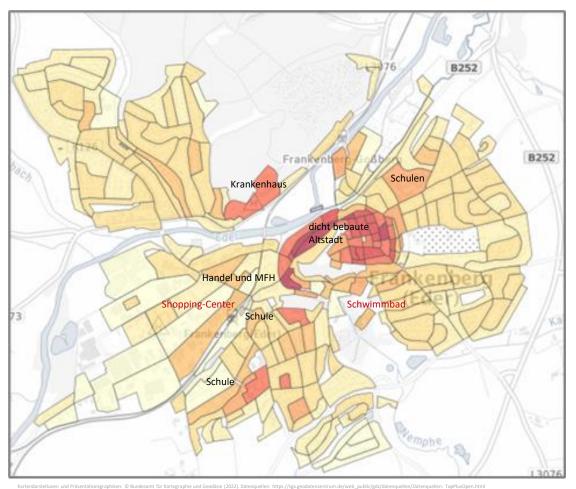


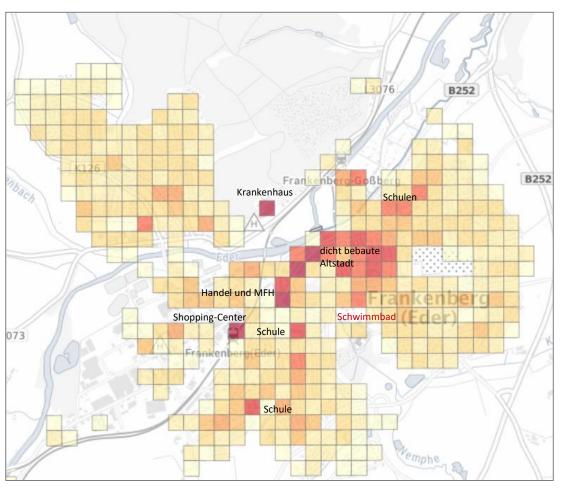


Best-Practice Datengrundlage, wenn keine Verbrauchsdaten zur Verfügung stehen

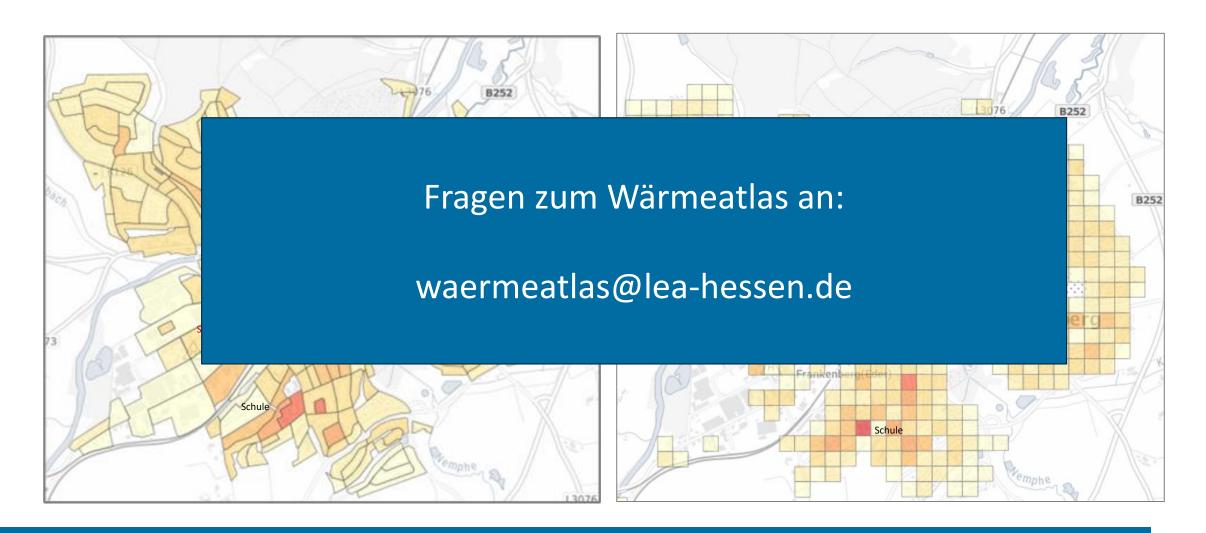
- Einteilung von Eignungsgebieten für die kommunale Wärmeplanung
- Identifikation von Ankerkunden für mögliche Wärmenetze
- Verschneidung mit lokalen, adressscharfen Verbrauchsdaten leitungsgebundener Energieträger (Fernwärme, Gas, Strom) und zu dezentralen Heizungen aus Schornsteinfegerdaten (Heizöl, Biomasse)
- Abgleich ermöglicht Bereinigung und Auffüllen von Lücken (Ausreißeranalyse, Identifikation mitversorgter Gebäude, Korrektur Anwendungsbereiche Endenergie z.B. bei Erdgasverbrauch in KWK-Anlagen)
- Sorgfältig abwägen, ob die Nutzung für Quartierskonzepte sinnvoll ist, speziell im Zusammenhang mit Planungsprozessen und Wirtschaftlichkeitsbetrachtungen

Kartendarstellungen und Präsentationsgraphiken: © Bundesamt für Kartographie und Geodäsie (2022).


Identifikation von Gebieten mit hohen



Wärmedichten und möglichen Ankerkunden für Wärmenetze



Wärmedichten und möglichen Ankerkunden für Wärmenetze

Vielen Dank für Ihre Aufmerksamkeit

GEF: Susanne Ochse

susanne.ochse@gef.de

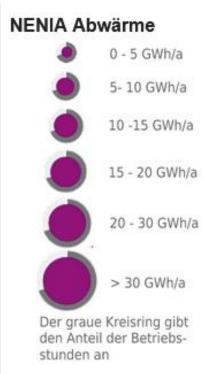
Geomer: Dr. Stefan Jäger

sj@geomer.de

ifeu: Sebastian Blömer

sebastian.bloemer@ifeu.de

BACK-UP


Abwärmekataster aus dem Forschungsprojekt "NENIA"

- + Theoretische Potenziale sensibler Abwärme in gefassten Abgasströmen
- + Nutzbar als erste Indikation für mögliche netzgebunden nutzbare Potenziale
- + Datengrundlagen:
 - + Emissionserklärungen genehmigungsbedürftiger Anlagen nach 11. Bundesimmissionsschutzverordnung im Berichtsjahr 2012
 - European Pollutant Release and Transfer Register (E-PRTR)
 - + Unternehmensangaben zu thermischen Prozessstromeinsätzen

Weitere Informationen zum Datensatz:

https://www.ifeu.de/fileadmin/uploads/Schlussbericht EnEffW%C3%A4rme-NENIA.pdf