

Wasserstoffinfrastruktur für die Binnenschifffahrt

Netzwerkarbeit und Studienergebnisse in RH₂INE

Was war die Idee des Projekts RH₂INE?

Aufbau einer multimodalen H₂-Infrastruktur

- Bündelung von Bedarfen
- Aufbau eines Ökosystems

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Was war die Idee des Projekts RH₂INE?

 Gemeinsames Vorgehen von NRW und PZH als Keimzelle

- Schaffung eines Standards

Aufbau einer multimodalen H₂-Infrastruktur

Grenzüberschreitende Kooperation

- Bündelung von Bedarfen
- Aufbau eines Ökosystems

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Was war die Idee des Projekts RH₂INE?

Gemeinsames Vorgehen von NRW

multimodalen H₂Infrastruktur

- Bündelung von Bedarfen
- Aufbau eines Ökosystems

 Gemeinsames Vorgehen von NRW und PZH als Keimzelle

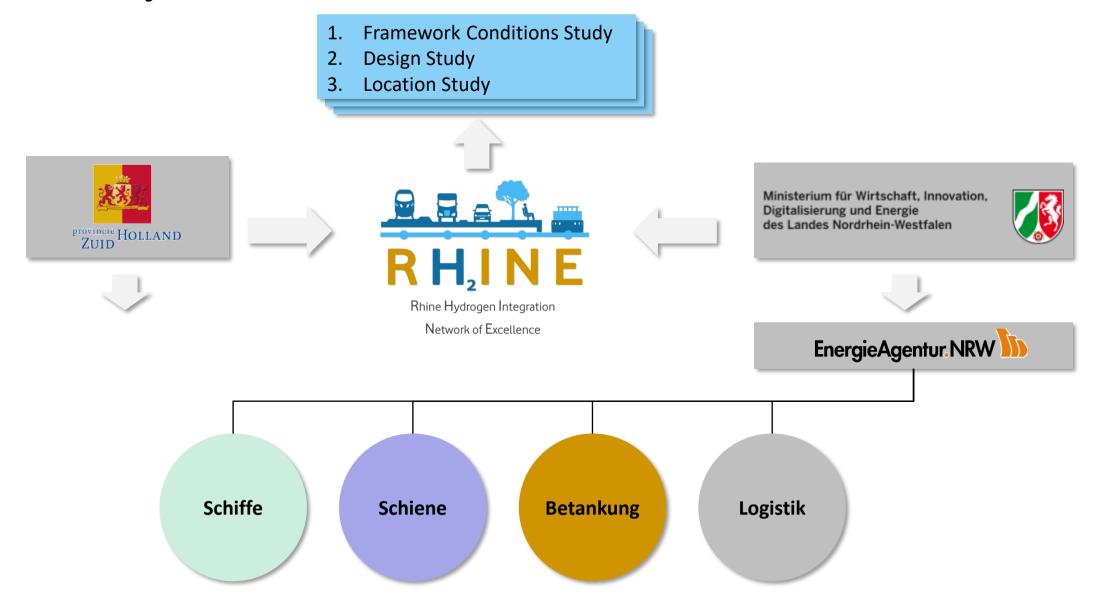
- Schaffung eines Standards

Grenzüberschreitende Kooperation

Einbindung vielfältiger Marktakteure

- Praxisnahe Ergebnisse
- Netzwerkaufbau

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

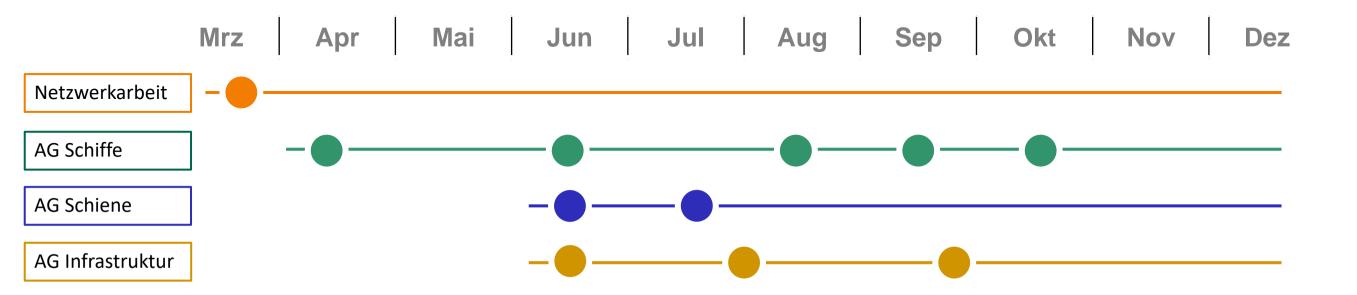

Aufbau einer

Struktur des Projekts

Ziele der Arbeitsgruppen

Einbindung wichtiger Marktakteure aus NRW

- Aufbau eines Netzwerks Wasserstoffaffiner Unternehmen rund um die Häfen
- Raum f
 ür Konsortienbildung
- Niederschwelliger Zugang zu RH₂INE


Begleitung und Spiegelung der Aktivitäten im Gesamtprojekt

- Raum zur Diskussion der Ergebnisse der Kickstart Study
- Begleitung aktueller und weiterer Projektinitiativen
- Grundlage für den Austausch mit den niederländischen Partnern

Arbeit im Netzwerk

- **Netzwerk-Kickoff** im März 2020 > Einrichtung von Arbeitsgruppen zu verschiedene Themen
- Aktive Teilnahme von über **50 Akteuren** in den genannten Arbeitsgruppen
- Nutzung des Netzwerks zur Initiierung von Projekten
- Forum um **Unterstützungsbedarf** zu ermitteln

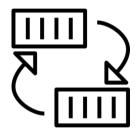
Ergebnisse aus den Arbeitsgruppen

AG Schiene

- Wasserstoff als Energieträger geeignet
- Elektrifizierung mit Oberleitung stellenweise kompliziert
- Konsortium aus NRW erarbeitet gemeinsam mit dem DLR eine Machbarkeitsstudium
- Umrüstung oder Neubau?

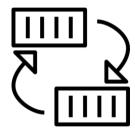
Ergebnisse aus den Arbeitsgruppen

	AG Schiene		AG Schiffe
•	Wasserstoff als Energieträger geeignet	•	Brennstoffzellenantrieb ist für den Einsatz in der Rheinschifffahrt geeignet
•	Elektrifizierung mit Oberleitung		geeignet
	stellenweise kompliziert	•	Initiales Potenzial von 8 – 12 Schiffen
•	Konsortium aus NRW erarbeitet gemeinsam mit dem DLR eine Machbarkeitsstudium	•	Darunter Container-, Tank- und Schüttgutschiffe
•	Umrüstung oder Neubau?	•	Aktueller Stand der Regulierung als zentrales Hindernis



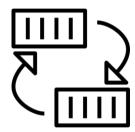
Ergebnisse aus den Arbeitsgruppen

AG Schiene	AG Schiffe	AG Infrastruktur
 Wasserstoff als Energieträger geeignet 	Brennstoffzellenantrieb ist für den Einsatz in der Rheinschifffahrt	Multimodalität als wichtiger Aspekt bei der Wirtschaftlichkeit
 Elektrifizierung mit Oberleitung stellenweise kompliziert 	 geeignet Initiales Potenzial von 8 – 12 Schiffen 	 Begrenzte Verfügbarkeit trimodaler Flächen
 Konsortium aus NRW erarbeitet gemeinsam mit dem DLR eine Machbarkeitsstudium 	 Darunter Container-, Tank- und Schüttgutschiffe 	 Großer Logistikaufwand bei der Wasserstoffversorgung
 Umrüstung oder Neubau? 	 Aktueller Stand der Regulierung als zentrales Hindernis 	 ~ 3 t H2 pro Schiff pro Umlauf (Woche)



"Lösung muss skalierbar sein, da die Nachfrage mit der Zeit steigen wird"

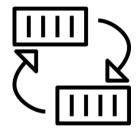
- → Anzahl von Containern und Abfüllanlagen kann erhöht werden
- → Neue Speichertechnologien können integriert werden


"Lösung muss skalierbar sein, da die Nachfrage mit der Zeit steigen wird"

"Versorgungsinfrastruktur sollte die selbe Flexibilität und Verfügbarkeit ermöglichen wie aktuelle Dieseltankstellen"

- → Anzahl von Containern und Abfüllanlagen kann erhöht werden
- → Neue Speichertechnologien können integriert werden
- → Einfacher Aufbau von Wasserstofftankstellen mit geringem Platzbedarf an günstigen Locations im Hafen
- → Kompressor, Hochdruckspeicher und Dispenser

"Lösung muss skalierbar sein, da die Nachfrage mit der Zeit steigen wird"

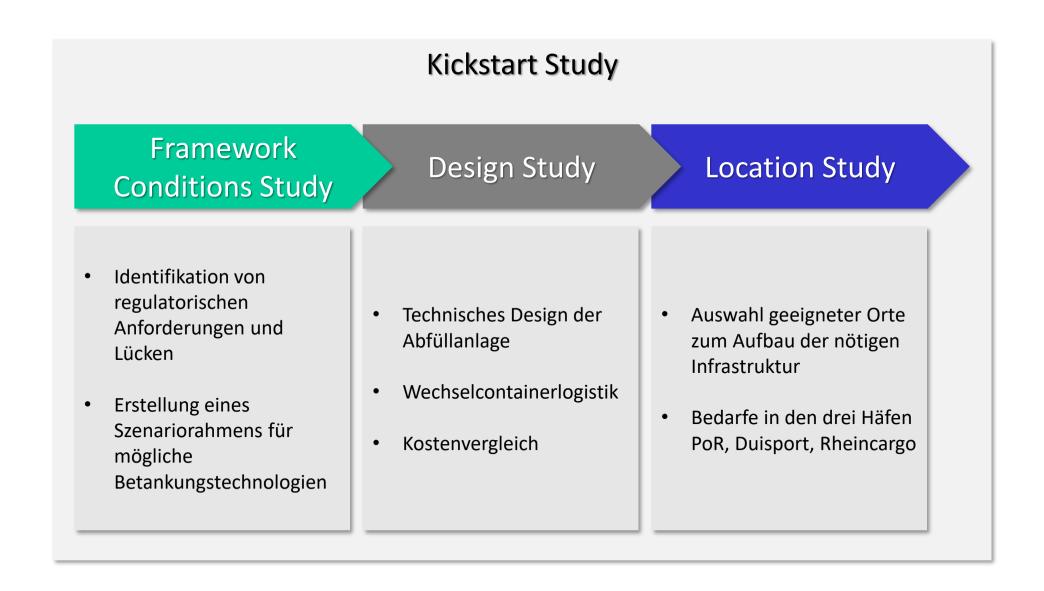

"Versorgungsinfrastruktur sollte die selbe Flexibilität und Verfügbarkeit ermöglichen wie aktuelle Dieseltankstellen"

"Versorgungsinfrastruktur sollte eine schnelle, flexible und ortsunabhängige Versorgung gewährleisten"

- → Anzahl von Containern und Abfüllanlagen kann erhöht werden
- → Neue Speichertechnologien können integriert werden
- → Einfacher Aufbau von Wasserstofftankstellen mit geringem Platzbedarf an günstigen Locations im Hafen
- → Kompressor, Hochdruckspeicher und Dispenser
- → Versorgung während des Lade-/Löschvorgangs
- → Zeitaufwendige Betankung im Hinterland
- → Keine Betankungsinfrastruktur für Schiffe nötig

"Lösung muss skalierbar sein, da die Nachfrage mit der Zeit steigen wird"

"Versorgungsinfrastruktur sollte die selbe Flexibilität und Verfügbarkeit ermöglichen wie aktuelle Dieseltankstellen"


"Versorgungsinfrastruktur sollte eine schnelle, flexible und ortsunabhängige Versorgung gewährleisten"

"Begrenzte Verfügbarkeit trimodaler Flächen"

- → Anzahl von Containern und Abfüllanlagen kann erhöht werden
- → Neue Speichertechnologien können integriert werden
- → Einfacher Aufbau von Wasserstofftankstellen mit geringem Platzbedarf an günstigen Locations im Hafen
- → Kompressor, Hochdruckspeicher und Dispenser
- → Versorgung während des Lade-/Löschvorgangs
- → Zeitaufwendige Betankung im Hinterland
- → Keine Betankungsinfrastruktur für Schiffe nötig
- → Keine trimodalen Flächen nötig
- → Multimodaler Einsatz der Container an verschiedenen Orten im Hafen

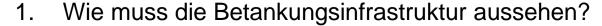
Struktur der Kickstart Study

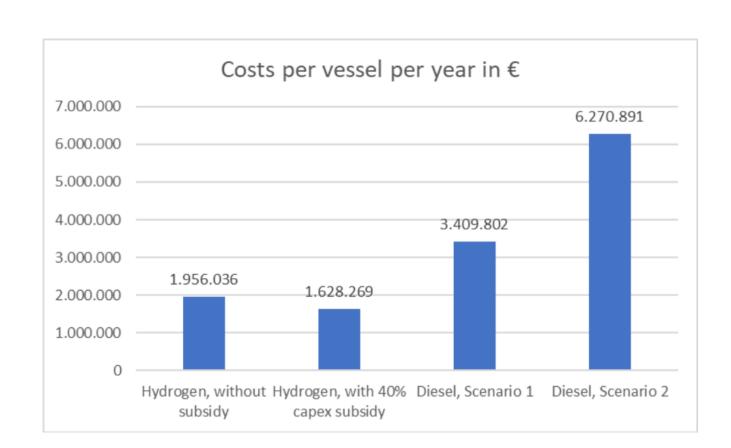


Aktuelle Rahmenbedingungen und Technologieoptionen

Framework Conditions Study

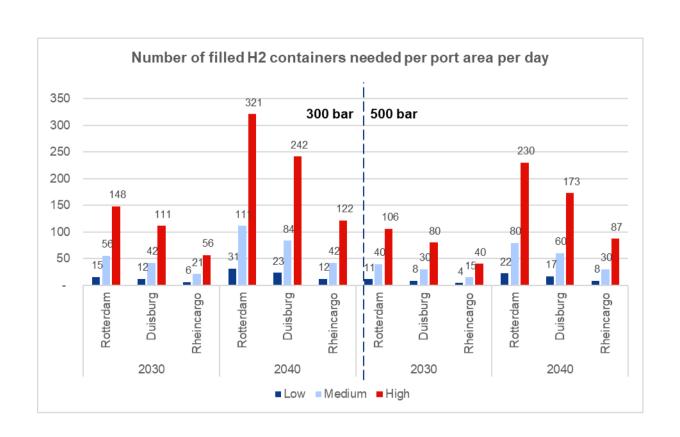
- 1. Welche Technologien stehen für zur Verfügung?
 - Vielversprechendste Lösung sind Wechselcontainer mit GH₂
- 2. Welches Emissionsminderungspotenzial besteht durch den Einsatz von Wasserstoff?
 - Je nach Szenario können durch den Einsatz von Wasserstoff 90.000 t bis 950.000 t CO₂ eingespart werden
- 3. Welche regulatorischen Lücken bestehen?
 - Sowohl der Betrieb von Schiffen als auch deren Versorgung muss derzeit mit Ausnahmeregelungen genehmigt werden




Infrastruktur und Logistik

Design Study

- Für die Versorgung der Schiffe sind Abfüllanlagen in oder nahe mehrerer Häfen nötig
- Bei 500 bar werden für 100 Schiffe 700 20 ft Container benötigt
- 2. Kann sich der Einsatz von Wasserstoff wirtschaftlich lohnen?
 - Brennstoffzellenschiffe sind für Unternehmen, trotz Förderung der Investitionskosten, teurer
 - Aus gesellschaftlicher Sicht sind BZ-Schiffe deutlich günstiger als konventionell betriebene Binnenschiffe
 - Vermeidung CO₂-Emissionen
 - Vermeidung weiterer Luftschadstoffe



Wasserstoffbedarfe und Locations

Location Study

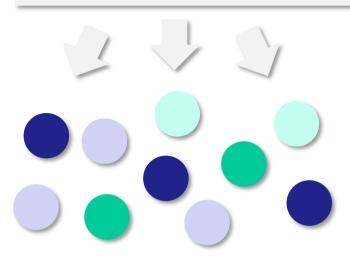
- 1. Wo kann die nötige Infrastruktur aufgebaut werden?
 - Die Abfüllanlagen können außerhalb der Häfen errichtet werden
 - Die Versorgung der Schiffe kann an bestehenden Containerterminals stattfinden
- 2. Wo fällt der Wasserstoffbedarf an?
 - Entsprechend ihres Anteils am Binnenschifffahrtsverkehr fallen in den Häfen unterschiedliche Bedarfe an

Roadmap RH₂INE

Realisierung der ersten Schiffsprojekte

Ausarbeitung des konkreten Logistikkonzepts für Wechselcontainer

Aufbau der nötigen Infrastruktur Identifikation und Akquise von Finanzierung und Förderung Entwicklung der betrachteten Standorte und Erweiterung des Netzwerks entlang des Rheins


Rhine Hydrogen Integration
Network of Excellence

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

EnergieAgentur.NRW

Patrick Krieger

Mobilität/ RH₂INE

0209/167 2831 0151/530 902 77 krieger@energieagentur.nrw

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

